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Abstract

Thermal effects in building attics are extremely important in regions where temperature extremes occur regularly. In

particular, in the northern regions of North America, cold winters can lead to a dangerous build-up of ice on roofs, as

well as preventing heat being distributed efficiently through the building. This paper examines heat transfer within attics

and looks at an inexpensive solution technique involving ceiling fans. The computer model developed accurately re-

produces the results of previous investigations, presents solutions for realistic Grashof numbers, and demonstrates the

effects of installing ceiling fans in the ceilings of top storey rooms in affected buildings.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Copper Chase Condominiums are part of the

Brian Head Ski Resort in Utah, USA. Situated some 214

miles from Las Vegas, Nevada, Brian Head is a pictur-

esque region reknown for snow sports in the winter and

a variety of other outdoor attractions in summer, in-

cluding Bryce Canyon and Zion National Parks, and

Cedar Breaks National Monument.

One of the two condominium buildings, the Lodge

building, is east-west oriented, about 50 m � 22 m and is

three storeys high. It has a central atrium which goes

from the ground floor right to the top of the building.

There is a section attached to the south side of the

building which houses a swimming pool and jacuzzi, and

another enclosed area on the north side of the building.

The Lodge building has two temperature-related

problems. Firstly, because the building is east-west ori-

ented and lies at latitude 37.5� N, the north side of the

roof sees no sun in winter. Consequently, snow collects

on this side of the roof and compacts to ice. There is a

serious danger of the roof collapsing under the weight,

and further, when the spring warmth begins to melt the

ice, it slides off, which is extremely dangerous for any

people below. The ice has also been known to go

through the roof of the section attached to the north side

of the building. Secondly, due to the central atrium and

the fact that only the ground floor is air conditioned,

rooms on the top floor get too hot in both summer and

winter.

Whilst there are many methods for melting ice on

roofs currently in use, all have disadvantages. Roof

sprinklers are not able to be used because the water

would freeze in the pipes. Also popular are heating ca-

bles; however, requiring some 50 W per square meter,

these are not economically feasible for such a big roof.

In this paper, we explore the possibility of putting

vents in the ceiling of the third floor to allow hot air to

rise into and circulate through the attic. Our aim is to

heat the attic sufficiently in winter to melt the ice

through the roofing material, thus preventing its col-

lection on the roof. In summer, such vents would allow

excess heat from the third floor to move into the attic

space.

Heat exchange in an attic space is not a new area of

research, having already been investigated by a number

of researchers, including Akinsete and Coleman [1],

Poulikakos and Bejan [2], del Campo et al. [3] and re-

cently by Hasani and Chung [4]. All these investigations

have had a fundamental problem, however, namely the

magnitude of the Rayleigh number they used for their

flows. In the study by Akinsete and Coleman [1], for

example, the maximum value for Ra used was 4:5 � 104.
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Hasani and Chung [4] stated that this range was too

small, claiming that ‘‘in reality, values of Ra as high as

106 can be encountered in such enclosures’’. However,

for a realistic attic we expect the Rayleigh number to be

of order 1010 or 1011.

In this article, we set out to examine the possibility of

modelling attic flow with realistic Rayleigh numbers.

2. Problem formulation

Following Akinsete and Coleman [1], we consider the

two-dimensional flow of an ideal fluid. We neglect both

viscous dissipation and compressibility effects and as-

sume fluid properties to be constant except in the body

force term in accordance with the Boussinesq approxi-

mation. Under these conditions, we may write down the

following set of dimensionless equations (1)–(5) gov-

erning the flow, as described by Hasani and Chung [4]:

Vorticity transport equation:

oX
ot

þ~qq � ~rrX ¼ r2X þ Ra
Pr

oX
oX

: ð1Þ

Vorticity equation:

X ¼ �r2W: ð2Þ

Velocity equations:

U ¼ oW
oY

: ð3Þ

V ¼ � oW
oX

: ð4Þ

Energy transport equation:

oh
ot

þ~qq � ~rrh ¼ 1

Pr
r2h: ð5Þ

In addition, we require a set of boundary conditions

for the flow. We model the attic space using a triangular

cross-section and neglect building end effects. The

boundaries of the attic are labelled as shown in Fig. 1.

We assume all boundaries to be solid, i.e. we consider

a solid barrier which divides the attic lengthwise.

Therefore, since there is no flow through any boundary,

the stream function is constant along all boundaries. We

hence define on all boundaries the streamfunction to be

zero. Since the enclosure is bounded on all sides by fixed

impermeable walls, we require that velocities are zero on

all boundaries.

We define the non-dimensional temperature on

boundary 1 to be zero, and that along boundary 2 to be

one. We also define boundary 3 to be insulated, so there

is no heat transfer through this boundary. (This is in

accordance with the symmetry of the attic.) We hence

require the condition given in Eq. (6):

oh
oX

����
boundary 3

¼ 0: ð6Þ

Now whilst boundary 3 is solid, we wish to be able to

compare our results with those of previous researchers

Nomenclature

cp specific heat at constant pressure, J kg�1 K�1

g acceleration due to gravity, Nm�3

Gr Grashof number

H height of the enclosure, m

P pressure, Pa

Pr Prandtl number

q velocity vector, m s�1

Ra Rayleigh number

t non-dimensional time

T absolute temperature, K

u, v x,y-components of velocity, m s�1

vin non-dimensional inflow velocity

U, V x,y-components of non-dimensional velocity

x, y Cartesian coordinates in horizontal and

vertical directions, respectively, m

X, Y non-dimensional x,y-coordinates

a thermal diffusivity, m2 s�1

b coefficient of thermal expansion, K�1

Dx, Dy grid spacings in the x and y-directions, re-

spectively

h non-dimensional temperature

k thermal conductivity, JK�1 m�1 s�1

l dynamic viscosity, kgm�1 s�1

m kinematic viscosity, m2 s�1

q fluid density, kg m�3

W non-dimensional stream function

X non-dimensional vorticity

Fig. 1. Simple model plan.
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such as Hasani and Chung [4] and Salmun [7]. Both

defined vorticity on boundary 3 to be zero, so initially

we do the same. We do, however, need to calculate the

vorticity along boundaries 1 and 2.

The boundary conditions are summarised in Table 1.

3. Method of solution

A 41 � 41 rectangular finite-difference grid is placed

over the triangular enclosure so that the diagonal ele-

ments coincide with points on the inclined surface

(boundary 1). Node (0; 0) corresponds to the junction

between boundaries 1 and 2, node (40; 0) to the right-

angled corner and node (40; 40) to the top corner of the

attic, as shown in Fig. 2.

Following Hasani and Chung [4], we attempt to solve

the equations as follows:

1. Solve for vorticity everywhere except on bound-

aries using the vorticity transport equation. The vorticity

transport equation is separated using the Peaceman–

Rachford alternating direction implicit (ADI) (Lapidus

and Pinder [5]) technique into two Eqs. (7) and (8):

oX
ot

� � tþ1
2
;tð Þ

þ U
oX
oX

� �tþ1
2

þ V
oX
oY

� �t

¼ o2X
oX 2

� �tþ1
2

þ o2X
oY 2

� �t
þ Ra

Pr
oh
oX

� �t
; ð7Þ

oX
ot

� � tþ1;tþ1
2ð Þ
þ U

oX
oX

� �tþ1
2

þ V
oX
oY

� �tþ1

¼ o2X
oX 2

� �tþ1
2

þ o2X
oY 2

� �tþ1

þ Ra
Pr

oh
oX

� �t
: ð8Þ

An upwind scheme is applied to ensure the stability of

the advective terms, and centred space schemes for the

second derivatives and the oh=oX term. It may be noted

that values for velocities and temperature at time-step t

are used, since we have not yet solved for these variables

at time (t þ 1). This will yield a tridiagonal system which

may be solved using the Thomas algorithm.

2. Solve for stream function everywhere except on

boundaries using the vorticity equation. We apply cen-

tred space schemes to the vorticity equation (2) and

solve completely for the stream function at all points not

on the boundaries. The stream function is solved com-

pletely at each time interval using the Gauss–Seidel it-

eration technique.

3. Solve for velocity everywhere except on boundaries

using the velocity equations (3) and (4). This is simply

performed by applying centred space schemes to the

velocity equations and solving at each point in the attic.

4. Solve for vorticity on boundaries 1 and 2. Several

finite-difference schemes were tried for vorticity on

boundaries 1 and 2. However, all led to equations which

were unstable upon application. It is suspected that

Hasani and Chung [4] experienced similar difficulties, for

they apparently did not directly apply finite-difference

techniques either. Instead, they used Jenson’s polyno-

mial (Jenson [6]) as an approximation for stream func-

tion, and hence were able to obtain Eqs. (9) and (10) for

boundary vorticities.

For boundary 1,

Xi;i ¼
�8Wiþ1;i þ Wiþ2;i

2DX 2

þ�8Wi;i�1 þ Wi;i�2

2DY 2
; 26 i6 38: ð9Þ

For boundary 2,

Xi;0 ¼
�8Wi;1 þ Wi;2

2DY 2
; 26 i6 39: ð10Þ

5. Solve for temperature using the energy transport

equation. The energy transport equation (5) is also

separated using the Peaceman–Rachford ADI technique

into two Eqs. (11) and (12):

oh
ot

� � tþ1
2
;tð Þ

þ U
oh
oX

� �tþ1
2

þ V
oh
oY

� �t

¼ 1

Pr
o2h
oX 2

� �tþ1
2

 
þ o2h

oY 2

� �t!
; ð11Þ

Table 1

Boundary conditions along the boundaries shown in Fig. 1

Boundary 1 2 3

Velocity U ¼ V ¼ 0 U ¼ V ¼ 0 U ¼ V ¼ 0

Temperature h ¼ 0 h ¼ 1 oh
oX ¼ 0

Stream function w ¼ 0 w ¼ 0 w ¼ 0

Vorticity Compute Compute X ¼ 0

Fig. 2. Finite-difference grid for a triangular enclosure.
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oh
ot

� � tþ1;tþ1
2ð Þ
þ U

oh
oX

� �tþ1
2

þ V
oh
oY

� �tþ1

¼ 1

Pr
o2h
oX 2

� �tþ1
2

 
þ o2h

oY 2

� �tþ1
!
: ð12Þ

An upwind scheme is again applied to ensure the sta-

bility of the advective terms, and centred space schemes

for the second derivatives. We use values for velocity at

time (t þ 1) since these are now available. This will yield

a tridiagonal system which may be solved using the

Thomas algorithm.

6. Temperature is well defined for boundaries 1 and

2, so we need only consider boundary 3. Since velocities

are zero on the boundaries and we have the insulation

property (6), the energy transport equation (5) reduces

to Eq. (13):

oh
ot

¼ 1

Pr
o2h
oX 2

�
þ o2h
oY 2

�
: ð13Þ

If we imagine a set of fictitious points with i ¼ 41, i.e.

(41; j), j ¼ 0; . . . ; 40, then by Eq. (6), we may define tem-

perature at these nodes such that ht
41;j ¼ ht

39;j. A centred

space scheme may now be applied to the o2h=oX 2 term.

This reduces (13) to a tridiagonal system which may

be solved using the Thomas algorithm.

4. Results

4.1. Simple model

Flow within a triangular enclosure representing the

attic with heated base, cooled inclined surface and

insulated (adiabatic) vertical side has been modelled

as previously described. Values of 710, 7100, 71 000 and

710 000 have been used for the Rayleigh number, whilst

0.71 has been used for the Prandtl number. Following

Hasani and Chung [4], a 41 � 41 grid has been used and

slopes for the inclined surface of 1.0, 0.5 and 0.2 anal-

ysed using Dx ¼ Dy, Dx ¼ 2Dy and Dx ¼ 5Dy respec-

tively.

The simple model considers the steady state solution

for flow in the triangular attic. This solution has been

obtained by developing a computer code to solve Eqs.

(7)–(13) and running the code until convergence is

achieved.

Figs. 3 and 4 show results for streamlines and tem-

perature contours for the various flow conditions. Since

we are dealing with steady flow, the streamlines are

equivalent to the paths followed by individual particles

in the fluid. These results resemble closely those ob-

tained by both Hasani and Chung [4] and Salmun [7].

The magnitude of the non-dimensional stream func-

tion increases approximately linearly with an increase in

Rayleigh number, as may be observed from the maxi-

mum value of the stream function in each case.

Using the velocity equations we can establish that

streamlines with positive W correspond to anticlockwise

circulation, and those with negative W correspond to

clockwise circulation. This means that for singled-cell

flow as occurs for low Rayleigh numbers (Fig. 3), flow is

anticlockwise. The air mass moves along the base to the

vertical wall where, have gained heat from the base, it

rises up the wall. When it reaches the cold roof, its heat

is lost and the air falls down along the inclined surface.

As the Rayleigh number is increased, there is a pro-

pensity for multicellular flow to develop. Whilst such

Rayleigh–Bernard convection might be expected for a

fluid heated from below, it was not observed in the nu-

merical models of Poulikakos and Bejan [2], who also

used a second order finite-difference scheme, and del

Campo et al. [3], who used a Galerkin finite element

scheme. Poulikakos and Bejan [2] did, however, discuss

the possibility of such convection, drawing attention to

the experimental study by Poulikakos and Bejan [8].

These observations were the basis on which Bejan [9]

wrote, ‘‘. . . at high enough Rayleigh numbers and in

shallow enough triangular spaces cooled from above,

the flow will opt for the multicellular B�aanard pattern

characteristic of layers heated from below.’’ The first

numerical model of multicellular flow in a triangular-

shaped space was that by Salmun [7], who used a second

order leapfrog scheme, and this result was supported by

Hasani and Chung [4], who used the third order accurate

QUICK scheme. Compared with the very even temper-

ature gradient for single-celled flow, the temperature

distributions for multicellular flow suggest that the fluid

is well mixed. As the number of cells increases, we

therefore expect the temperature to be more uniform

throughout the enclosure.

The shift to multicellular flow is encouraged by a

decrease in slope of the inclined surface. An excellent

illustration of this is the case Ra ¼ 710000 (Fig. 4),

wherein a slope of 1.0 gives three cells, whilst slopes of

0.5 and 0.2 give 5- and 7-cell flows respectively. It is

postulated that multicellular flow develops due to vis-

cous effects which do not allow particles to push past

one another freely. As the slope is decreased, there is

increased friction between particles moving to the left

down the inclined surface and those moving to the right

along the base. The single-celled flow cannot be main-

tained under these conditions. Multicelled flow results,

in which neighbouring cells circulate in opposite direc-

tions so that, near the border between the two cells, the

flows are in the same direction.

Whilst the critical Rayleigh number at which the flow

becomes multicellular, Rac, has not been determined

exactly, the results do indicate that for slope 0.2, Rac lies

in the range 710–7100. This is in agreement with both

the numerical model by Salmun [7], which predicted
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Rac 	 4500, and the analytical value of 	3000 obtained

in a separate study by Salmun [10] using linear theory.

The strong correlation between these results and two

other published sets validates the code for convection

without inflow or outflow. We now consider application

of this model to a real attic.

4.2. Real attic model

Most other investigations regarding natural convec-

tion in triangular-shaped regions have been aimed at

modelling air flow in real attics. However, all have a

fundamental problem: the magnitude of the Rayleigh

number. In the study by Akinsete and Coleman [1], for

example, the maximum value for Ra used was 4:5 � 104,

whilst Hasani and Chung [4] stated that values of Ra as

high as 106 were applicable in real enclosures. Values

of this magnitude were also used in the other studies

mentioned here.

The Rayleigh number is defined as

Ra ¼ gb Th � Trefð ÞH 3

ma
: ð14Þ

For a realistic attic of height 4 m, i.e. that of a large

building, we obtain a value for Ra of 9:06 � 1010, i.e.

Gr ¼ Ra=Pr ¼ 1:28 � 1011. Hence for a realistic attic,

Ra ¼ Oð1011Þ, and even for small buildings, we have

Ra > 1010.

Unfortunately, for such a large Ra, it is extremely

difficult to obtain a stable model. This is perhaps not

surprising, since in the vorticity transport equation (1)

we have an extremely large coefficient on the right-hand

side. In order to counter this, either the value for non-

dimensional vorticity must be extremely large or there

needs to be almost no variation of temperature in the x-

direction.

From the simple model, we note that there is in-

creased multicellular behaviour for increased Ra. This

Fig. 3. (a,c,e) Streamlines and (b,d,f) temperature contours for Ra ¼ 710 and inclined surface slope 1.0, 0.5 and 0.2 respectively.
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suggests that for realistic Ra the air must be extremely

well mixed to the point where a 41 � 41 grid would be

insufficient to model the multicellular structure of the

flow. Indeed, it calls into question whether describing

the flow as ‘‘multicellular’’ would be accurate for such a

case, or whether the flow would be turbulent.

In order to improve stability at high Rayleigh and

Grashof numbers, we consider the way in which we

model boundary vorticity. Briley [11] used higher-order

schemes for modelling boundary vorticity which are

claimed to be stable for high Ra flows. However, in a

triangular-shaped space it is extremely difficult to im-

plement such schemes near the corners. In particular,

Briley’s scheme requires four points within the solution

domain (in our case, the attic), and in the corners we

would have to have an excessive number of nodes

outside the actual flow in order to implement the

scheme. Simply refining the grid would not solve this

problem, since it is a problem associated with the

scheme, not the grid resolution. We would therefore

need to use a lower order scheme near the corners of the

flow, and using different schemes to calculate boundary

vorticity at different locations is likely to lead to insta-

bilities. Indeed, no stable model was obtained for such a

case.

Therefore, in order to obtain a stable model at high

Rayleigh and Grashof numbers, we define vorticity on

the boundaries to be zero.

Consider a realistic Rayleigh number of 7:1 � 1010,

i.e. Gr ¼ 1011. Fig. 5 shows streamlines and temperature

contours for an inclined surface of slope 0.5.

Initial inspection of the streamlines in Fig. 5(a) sug-

gests that we have taken a big step backwards, since now

the flow is dominated by a single cell, and we stated

previously that a high Rayleigh or Grashof number

should result in many cells. However, we also suggested

that multicellular flow should result in thorough mixing

of the air, and hence an almost uniform temperature

distribution. The temperature distribution in Fig. 5(b)

strongly supports this.

Fig. 4. (a,c,e) Streamlines and (b,d,f) temperature contours for Ra ¼ 710000 and inclined surface slope 1.0, 0.5 and 0.2 respectively.
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In order to verify this result, we consider the

temperature distribution for various values of the

Grashof number. The ‘‘uniform’’ temperature distribu-

tion evolves slowly as the Grashof number is increased

as expected. The surprising result is that whilst the

temperature within the attic is almost uniform, it is

uniformly cold!! The temperature throughout the attic is

close to that of the cold surface, and the warm surface

below provides very little heating at all! We would ex-

pect this effect to be accentuated by any insulation pre-

sent between the attic space and rooms below.

Perhaps even more surprising is that this temperature

distribution results solely from the gravity term in the

conservation of momentum equations. In other words,

the temperature distribution in the attic is almost solely

governed by gravity.

4.3. Real attic model incorporating inflows and outflows

We now modify the model to allow air to flow into

and out of the system through the vertical and hori-

zontal boundaries. This models air of a given tempera-

ture being pumped into and circulated through the attic.

We must ensure that mass is conserved in the system,

so the amount of air we pump into the system must be

the same as that which exits. We also attempt to account

for the walls around the enclosure, since the thermal

conductivity of the boundaries will affect the tempera-

ture distribution of the attic for given external (outside)

temperature and given temperature of the rooms below.

We therefore define further boundary conditions and

modify the energy Eq. (15), since thermal conductivity is

no longer constant over all space:

qcp
DT
Dt


¼ kr2T : ð15Þ

Our aim is to observe the effects of an inflow/outflow

system on the temperature distribution of the attic. Such

results could be of benefit for a variety of temperature-

related problems in buildings. Further, we may suspect

that for sufficiently high inflow velocity, the instabilities

observed previously should be reduced, so there is a

chance that we may obtain results which are applicable

to a real attic of appropriate Grashof number.

For fluids in which thermal conductivity is not con-

stant, the energy Eq. (15) should read

qcp
DT
Dt


¼ ~rr � ðk ~rrT Þ: ð16Þ

It may be noted that this is normally the case for com-

pressible fluids since thermal conductivity varies with

density.

After non-dimensionalisation, Eq. (16) may be re-

written to give a new energy transport equation:

oh
ot

þ~qq � ~rrh ¼ 1

lcp
~rr � ðk ~rrhÞ: ð17Þ

We allow air to flow in and out at specific points on

the boundaries. Consequently, the stream function must

take a constant value on each section of boundary which

does not have an inflow or outflow.

Consider a system with an inflow on the horizontal

base and an outflow on the vertical wall. We suppose

that the streamline passing from the centre of the inflow

to the centre of the outflow corresponds to W ¼ 0. We

therefore expect that the stream function at the node to

one side of the inflow will be the negative of that to the

other side. Using the velocity equation (4), we may de-

fine values for stream function on either side of the in-

flow as follows:

Wiþ1;0 ¼ �vinDX ; ð18Þ
Wi�1;0 ¼ vinDX : ð19Þ

For a system with an inflow on the horizontal boundary

and an outflow on the vertical surface, we should

therefore have the boundary stream function distribu-

tion shown in Fig. 6. The stream function may be de-

rived in a similar manner for other inflow and outflow

locations and for multiple inflow/outflow systems.

Since the boundary nodes in this model represent the

solid walls surrounding the fluid rather than the fluid

itself, we are now able to define vorticity as zero on all

boundaries without loss of generality.

We require velocities on the boundaries to be zero

except at the inflow and outflow points. We have already

defined temperature on boundaries 1 and 2, and we

solve for temperature on boundary 3 as before. The

Fig. 5. (a) Streamlines and (b) temperature contours for

Gr ¼ 1011.
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temperature of air entering the attic through the inflow

is defined to be hin.

We solve for temperature using the Peaceman–

Rachford technique combined with an upwind scheme

as before. However, we now need to incorporate vari-

able thermal conductivity. The ADI technique now

separates Eq. (17) into Eqs. (20) and (21):

oh
ot

� � tþ1
2
;tð Þ

þ U
oh
oX

� �tþ1
2

þ V
oh
oY

� �t

¼ 1

lcp

o

oX
k
oh
oX

� �tþ1
2

 
þ o

oY
k
oh
oY

� �t!
; ð20Þ

oh
ot

� � tþ1;tþ1
2ð Þ
þ U

oh
oX

� �tþ1
2

þ V
oh
oY

� �tþ1

¼ 1

lcp

o

oX
k
oh
oX

� �tþ1
2

 
þ o

oY
k
oh
oY

� �tþ1
!
: ð21Þ

4.3.1. Single inflow system

Consider placing an inflow with temperature hin ¼ 1

and velocity vin along the horizontal base. The air is

allowed to flow out at a point on the vertical wall. This

situation is considered for Gr ¼ 1011.

Fig. 7 gives streamlines and temperature contours for

inflow velocity 2 � 105 (corresponding to 0.714 ms�1).

Since we are interested in increasing the temperature

on the inclined surface, we place the inflow close to

the inclined surface. We locate the outflow halfway up

the vertical wall; for an inclined surface of slope 0.5, the

outflow corresponds to ðX ; Y Þ ¼ ð2; 1=2Þ. As expected,

the inflow increases the temperature along the bottom of

the attic and induces air flow directly from the inflow

point to the outflow point. As the inflow/outflow ve-

locities are increased, this effect is more pronounced, but

qualitatively very similar.

If we wish to place the inflow on the vertical surface,

we must clearly place it above the outflow, since other-

wise it would be pushing against the natural flow, and the

inflowing air would be pushed straight up to the outflow.

Placing the inflow higher on the wall should result in the

inflow being enhanced by the natural flow. This has been

tested by considering inflow position (2; 7=8), for which

results are given in Fig. 8. The inflow velocity is again

2 � 105 and the inflow temperature is 1.0.

Fig. 6. Stream function for an inflow on the horizontal

boundary and outflow on the vertical boundary.

Fig. 7. (a) Streamlines and (b) temperature contours for

Gr ¼ 1011, slope 0.5 with inflow at (1=4; 0), velocity 200 000,

and outflow at (2; 1=2).

Fig. 8. (a) Streamlines and (b) temperature contours for

Gr ¼ 1011, slope 0.5 and inflow velocity 2 � 105 for inflow on

the vertical boundary and outflow halfway up the vertical

boundary.
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4.3.2. Multiple inflow system

Consider now placing two inflows on the horizontal

boundary in order to increase the air temperature of the

attic. Consider inflows at positions (1=4; 0) and (3=4; 0)

with an inflow velocity of 2 � 105 at each location. The

outflow remains at (2; 1=2). We define the stream func-

tion on the boundaries in order to account for the various

inflows and outflow. This is done as previously described,

and boundary stream functions can be defined as shown

in Fig. 9. Results for this case are shown in Fig. 10.

A comparison between Figs. 7(a) and 10(a) indicates

that when the second inflow is present, the natural cir-

culation is less influential on the overall circulation

within the attic, i.e. the region which is continually cir-

culating in the attic is smaller. This is not surprising

since we are now pumping twice the volume of air

through the attic in the same amount of time. A com-

parison between Figs. 7(b) and 10(b) suggests that the

extra inflow has little effect on the temperature in the

bottom left-hand corner, but has a significant effect on

the temperature in the top corner. The second inflow at

(3=4; 0) would thus be advantageous if we are concerned

with heating the whole inclined surface.

5. The Copper Chase attic

The Copper Chase attic is divided into three sections,

two symmetric triangular prisms separated by a narrow

corridor. The width of the building is about 24 m, so the

length of each triangular cross-section is about 11 m.

The roof has slope 512 	 0:417, so the height of the

triangular cross-section is about 4.58 m. We attempt to

model air flow in one of the triangular sections. For this

slope, X varies from 0 to 12=5, whilst Y varies from 0 to

1. The Grashof number for the Copper Chase attic is

Gr 	 2 � 1011.

The roof material (i.e. the inclined surface) is ply-

wood with metal on the outside. Metals have a far

greater thermal conductivity than plywood, so we may

neglect any temperature gradient across the metal as

being negligible compared with that across the plywood.

The vertical walls of the corridor are made of plywood,

and we assume the ceiling is insulated with glass wool

(fibreglass).

We assume that the boundary nodes of our finite-

difference grid have thermal conductivities correspond-

ing to these materials and that the rest of the grid has

the thermal conductivity of air. For a 41 � 41 grid, the

distance between each node in the y-direction will be

about 11.5 cm, which is not unreasonable for the insu-

lation layer. For situations in which we have an inflow

or outflow, the conductivity of the appropriate bound-

ary nodes is set to the value for air.

Firstly, we consider the actual temperature distribu-

tion in the Copper Chase attic, i.e. we model the attic

with no inflow or outflow as is the case for the real attic.

We assume the air temperature along the horizontal

base is 10 �C. The resulting streamlines and temperature

contours are shown in Fig. 11. The attic is of almost

uniform temperature, i.e. very close to the temperature

of the inclined surface.

A single inflow is added at ðx; yÞ ¼ ð11=8; 0Þ, i.e. node

(5; 0), and an outflow at ðx; yÞ ¼ ð11; 2:29Þ, i.e. node

(40; 20). The model is run for inflow velocities of 0.5 and

1 ms�1. Streamlines and temperature contours for these

situations are shown in Fig. 12. As expected, the main

cell is pushed towards the top corner of the attic, and we

Fig. 9. Summary of defined stream function values on bound-

aries for two inflows at (1=4; 0) and (3=4; 0), each with inflow

velocity vin, and outflow at (2; 1=2).

Fig. 10. (a) Streamlines and (b) temperature contours for

Gr ¼ 1011, slope 0.5, with inflows at (1=4; 0) and, (1=2; 0) and

outflow at (2; 1=2).
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see a significant increase in temperature within the attic

space. These effects are enhanced by an increased inflow

velocity, as the inflow becomes more dominant over the

natural convection.

We now add a second inflow at (33=8; 0), i.e. node

(15; 0). Results for this multiple-inflow situation are

given in Fig. 13 for both inflow velocities. Clearly there

is a dramatic increase in the attic air temperature, which

again is enhanced by an increase in inflow velocity. The

lower half of the attic is now well heated, including the

region close to the inclined surface. This would hope-

fully lead to melting of the ice outside.

6. Results and conclusions

6.1. Flow in a triangular-shaped space

The simple model presented is able to model natural

convection in a triangular-shaped space for low Ray-

leigh and Grashof numbers. The results obtained using

this model are consistent with those obtained by previ-

ous researchers. For extremely low Grashof numbers,

the flow is single celled. Multicellular flow patterns form

if the Grashof number is increased or if the slope of the

inclined surface is decreased. In such situations, there is

increased mixing of the air, resulting in a tendency to-

wards a uniform temperature distribution. Unfortu-

nately, however, and contrary to the claims of previous

researchers, the results obtained are not applicable to

flow in a real attic, since for such a space the Grashof

number is much greater.

In order to obtain a solution which is stable for re-

alistic Grashof numbers, boundary vorticity has been

defined to be zero. This produces results which show

that, whilst an attic does indeed have an approximately

uniform temperature distribution for realistic Grashof

numbers, the temperature is little more than that of the

cold inclined surface.

By allowing warm air to flow in through the hori-

zontal base and out through the vertical wall, we are

able to increase the temperature in the attic. This effect is

enhanced by placing the inflow close to where the base

meets the inclined surface, using a higher inflow velocity,

and using more than one inflow into the system.

6.2. The Copper Chase attic

At the present time, the air in the Copper Chase attic

is extremely cold. The temperature distribution is almost

uniform and is approximately that of the inclined sur-

face, which is why the ice is not melting. The addition of

vents which allow air to pass from the warm third storey

rooms into the attic should result in some increase in the

Fig. 11. (a) Streamlines and (b) temperature contours (�C) for the Copper Chase attic with no inflow/outflow.
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attic temperature. Using fans to pump air into the attic

at higher velocities would enhance this effect, as would

the use of multiple vents. Hence there is the potential for

melting to occur, which would eliminate the problem of

ice collection on the roof, and at the same time remove

some of the excess heat from the third floor.

6.3. Conclusions

This study has demonstrated the ability of the model

to reproduce the results of previous investigations, de-

velop solutions for realistic Grashof numbers, and ex-

amine the effect of installing active vents in the ceilings

of the top floor units at Copper Chase. The results from

these simulations are consistent with qualitative infor-

mation that the attic is indeed very cold during the

winter months.

Additional data not currently available needs to be

collected to verify the model thoroughly. Once this is

available, further processes can be included in the model,

e.g. better definition of the roofing and insulation mate-

rial thermal properties, examining building end effects

through a three-dimensional model, including a tur-

bulence model to accommodate such a high Grashof

Fig. 12. (a,c) Streamlines and (b,d) temperature contours for

the Copper Chase attic with inflow at (11=8; 0) and outflow at

(11; 2:29), and inflow velocity 0.5 and 1 ms�1 respectively.

Fig. 13. (a,c) Streamlines and (b,d) temperature contours (�C)

for the Copper Chase attic with inflows at (11=8; 0) and

(33=8; 0) and outflow at (11; 2:29). (a,b) Correspond to inflow

velocity 0.5 ms�1, whilst (c,d) correspond to inflow velocity 1

ms�1.
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number. However, without any definitive data to justify

further extensions, the current model has provided an ini-

tial solution to the two problems, i.e. install ceiling fans.
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